4.8 Article

Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!

期刊

PLANT PHYSIOLOGY
卷 171, 期 1, 页码 306-317

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.16.00037

关键词

-

资金

  1. French National Research Agency, Investissements d'Avenir Program (Laboratory of Excellence ARBRE) [ANR-11-LABX-0002-01]
  2. Swiss National Science Foundation (CLIMWOOD) [160077]
  3. FPS COST Action STReESS [FP1106]

向作者/读者索取更多资源

The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting treering structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据