4.7 Article

Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis

期刊

PLANT MOLECULAR BIOLOGY
卷 92, 期 3, 页码 391-400

出版社

SPRINGER
DOI: 10.1007/s11103-016-0520-5

关键词

Salt tolerance; SOS pathway; 14-3-3 proteins; Ubiquitination; Stability; Subcellular localization

资金

  1. Sichuan University Start-Up Funding

向作者/读者索取更多资源

Salt stress induces the degradation of 14-3-3 proteins, and affects the localization of 14-3-3 lambda. Both the modulation of 14-3-3 protein stability and the subcellular localization of these proteins are involved in salt tolerance in plants. Salt tolerance in plants is regulated by multiple signaling pathways, including the salt overly sensitive (SOS) pathway, of which the SOS2 protein is a key component. SOS2 is activated under salt stress to enhance salt tolerance in plants. We previously identified 14-3-3 lambda and kappa as important regulators of salt tolerance. Both proteins interact with SOS2 to inhibit its kinase activity under normal growth conditions. In response to salt stress, 14-3-3 proteins dissociate from SOS2, releasing its activity and activating the SOS pathway to confer salt tolerance (Zhou et al. Plant Cell 26:1166-1182, 2014). Here we report that salt stress promotes the degradation of 14-3-3 lambda and kappa, at least in part via the actions of SOS3-like calcium binding protein 8/calcineurin-B-like10, and also decreases the plasma membrane (PM) localization of 14-3-3 lambda. Salt stress also partially represses the interaction of SOS2 and 14-3-3 lambda at the PM, but activates PM-localized SOS2. Together, these results suggest that, in plants, both the modulation of 14-3-3 stability and the subcellular localization of these proteins in response to salt stress are important for SOS2 activation and salt tolerance. These data provide new insights into the biological roles of 14-3-3 proteins in modulating salt tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据