4.3 Article

Functional analysis of diacylglycerol acyltransferase1 genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa

期刊

PLANT BIOTECHNOLOGY REPORTS
卷 10, 期 3, 页码 141-153

出版社

SPRINGER
DOI: 10.1007/s11816-016-0394-7

关键词

Camelina sativa; Diacylglycerol acyltransferase; DGAT1; Oilseed crop; Seed oil; Triacylglycerol

资金

  1. Korea Institute of Planning and Evaluation for Technology of the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea [312033-05]
  2. Cooperative Research Program for Agriculture Science and Technology Development (Next-Generation BioGreen 21 Program) of the Rural Development Administration, Republic of Korea [PJ0110522]

向作者/读者索取更多资源

Camelina (Camelina sativa), which belongs to the Brassicaeae family, is an emerging oilseed crop with the potential to expand biodiesel production to arid land. During storage oil synthesis, diacylglycerol acyltrasferase1 (DGAT1) catalyzes the conversion of diacylglycerol (DAG) and free fatty acids to triacylglycerol (TAG). In this study, three DGAT1 genes (CsDGAT1A, CsDGAT1B, and CsDGAT1C) were isolated from developing C. sativa seeds. The deduced amino acid sequences of the three CsDGAT1 genes shared more than 84 % identity with those of DGAT1 genes from Arabidopsis thaliana and Brassica napus. CsDGAT1A, B, and C transcripts were detected in various C. sativa organs, including developing seeds. Fluorescent protein-fused CsDGAT1A, B, and C were localized in the endoplasmic reticulum (ER) of tobacco epidermal cells. When the CsDGAT1A, B, and C genes under the control of the BnNapin promoter were expressed in an Arabidopsis AS11 mutant, which is defective in DGAT1, the amounts and composition of total fatty acids in dry seeds were restored to those of the wild type, indicating the three CsDGAT1 genes to be functionally active. In transgenic C. sativa plants overexpressing CsDGAT1B, the levels of total seed oils were increased by similar to 24 % compared with non-transgenic lines. Transgenic C. sativa embryos with enhanced seed oil contents harbored larger embryonic cells and a greater number of cells compared with the wild type. Transgenic Camelina plants with increased oil contents can be used as renewable resources for the production of biodiesel and non-petroleum-based biomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据