4.7 Article

Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin

期刊

PLANT AND CELL PHYSIOLOGY
卷 57, 期 3, 页码 568-579

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcw016

关键词

Arabidopsis; Bioenergy; Cell wall; HCT; Lignin; Saccharification

资金

  1. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]
  2. National Institutes of Health, National Institute of General Medical Sciences
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  4. NNF Center for Biosustainability [Synthetic Biology Tools for Yeast] Funding Source: researchfish
  5. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据