4.7 Article

Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi

期刊

PHYTOCHEMISTRY
卷 130, 期 -, 页码 90-98

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2016.05.012

关键词

Arbuscular mycorrhizal symbiosis; Glomeromycota; Gigaspora margarita; Hyphal branching; Strigolactone; Carlactone; Carlactonoic acid; Synthetic analogue

资金

  1. Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry
  2. Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry

向作者/读者索取更多资源

Hyphal branching in the vicinity of host roots is a host recognition response of arbuscular mycorrhizal fungi. This morphological event is elicited by strigolactones. Strigolactones are carotenoid-derived terpenoids that are synthesized from carlactone and its oxidized derivatives. To test the possibility that carlactone and its oxidized derivatives might act as host-derived precolonization signals in arbuscular mycorrhizal symbiosis, carlactone, carlactonoic acid, and methyl carlactonoate as well as mono-hydroxycarlactones, 4-, 18-, and 19-hydroxycarlactones, were synthesized chemically and evaluated for hyphal branching-inducing activity in germinating spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal branching activity was found to correlate with the degree of oxidation at C-19 methyl. Carlactone was only weakly active (100 ng/disc), whereas carlactonoic acid showed comparable activity to the natural canonical strigolactones such as strigol and sorgomol (100 pg/disc). Hydroxylation at either C-4 or C-18 did not significantly affect the activity. A series of carlactone analogues, named AD ester and AA'D diester, was synthesized by reacting formyl Meldrum's acid with benzyl, cyclohexylmethyl, and cyclogeranyl alcohols (the A-ring part), followed by coupling of the potassium enolates of the resulting formylacetic esters with the D-ring butenolide. AD ester analogues exhibited moderate activity (1 ng 100 pg/disc), while AA'D diester analogues having cyclohexylmethyl and cyclogeranyl groups were highly active on the AM fungus (10 pg/disc). These results indicate that the oxidation of methyl to carboxyl at C-19 in carlactone is a prerequisite but BC-ring formation is not essential to show hyphal branching activity comparable to that of canonical strigolactones. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据