4.5 Article

Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts

期刊

PHYSIOLOGICAL GENOMICS
卷 48, 期 3, 页码 220-229

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00116.2015

关键词

microRNA (miRNA); cardiovascular disease; Na/K-ATPase; fibrosis; chronic kidney disease

资金

  1. National Institutes of Health (NIH) [1F32DK-104615-01, HL-105649, HL-109015]
  2. National and Ohio Valley Affiliate of the American Heart Association [13POST16860035]
  3. NIH
  4. Mississippi INBRE [P20GM-103476]
  5. Center for Psychiatric Neuroscience-COBRE [P30GM-103328]
  6. Obesity, Cardiorenal and Metabolic Diseases COBRE [P20GM-104357]

向作者/读者索取更多资源

Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据