4.2 Article

Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels

期刊

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
卷 89, 期 6, 页码 462-472

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/688737

关键词

amphibians; corticosterone; immune system; metabolic rate; oxidative stress; stress physiology

资金

  1. Ministerio de Economia y Competitividad [CGL2009-11123/BOS]
  2. Ministerio de Educacion [F.P.U.-AP2010-5373]

向作者/读者索取更多资源

Natural and anthropogenic disturbances cause profound alterations in organisms, inducing physiological adjustments to avoid, reduce, or remedy the impact of disturbances. In vertebrates, the stress response is regulated via neuroendocrine pathways, including the hypothalamic-pituitary-interrenal axis that regulates the secretion of glucocorticoids. Glucocorticoids have cascading effects on multiple physiological pathways, affecting the metabolic rate, reactive oxygen species production, or immune system. Determining the extent to which natural and anthropogenic environmental factors induce stress responses in vertebrates is of great importance in ecology and conservation biology. Here we study the physiological stress response in spadefoot toad tadpoles (Pelobates cultripes) against three levels of a series of natural and anthropogenic stressors common to many aquatic systems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5), predators (absent, native, and invasive), and temperature (217, 257, and 29 degrees C). The physiological stress response was assessed examining corticosterone levels, standard metabolic rate, activity of antioxidant enzymes, oxidative cellular damage in lipids, and immunological status. We found that common stressors substantially altered the physiological state of tadpoles. In particular, salinity and herbicides cause dramatic physiological changes in tadpoles. Moreover, tadpoles reduced corticosterone levels in the presence of natural predators but did not do so against invasive predators, indicating a lack of innate recognition. Corticosterone and the antioxidant enzyme glutathione reductase were the most sensitive parameters to stress in this study. Anthropogenic perturbations of aquatic systems pose serious threats to larval amphibians even at nonlethal concentrations, judging from the marked physiological stress responses generated, and reveal the importance of incorporating physiological information onto conservation, ecological, and evolutionary studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据