4.4 Article

The observational signature of modelled torsional waves and comparison to geomagnetic jerks

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pepi.2016.03.012

关键词

Geomagnetism; Geomagnetic jerks; Torsional waves; Secular variation

资金

  1. NERC [NE/I012052/1]
  2. NERC [NE/I012052/1] Funding Source: UKRI
  3. Natural Environment Research Council [NE/I012052/1, 1270247] Funding Source: researchfish

向作者/读者索取更多资源

Torsional Alfven waves involve the interaction of zonal fluid flow and the ambient magnetic field in the core. Consequently, they perturb the background magnetic field and induce a secondary magnetic field. Using a steady background magnetic field from observationally constrained field models and azimuthal velocities from torsional wave forward models, we solve an induction equation for the wave-induced secular variation (SV). We construct time series and maps of wave-induced SV and investigate how previously identified propagation characteristics manifest in the magnetic signals, and whether our modelled travelling torsional waves are capable of producing signals that resemble jerks in terms of amplitude and timescale. Fast torsional waves with amplitudes and timescales consistent with a recent study of the 6 yr Delta LOD signal induce very rapid, small (maximum similar to 2 nT/yr at Earth's surface) SV signals that would likely be difficult to be resolve in observations of Earth's SV. Slow torsional waves with amplitudes and timescales consistent with other studies produce larger SV signals that reach amplitudes of similar to 20 nT/yr at Earth's surface. We applied a two-part linear regression jerk detection method to the SV induced by slow torsional waves, using the same parameters as used on real SV, which identified several synthetic jerk events. As the local magnetic field morphology dictates which regions are sensitive to zonal core flow, and not all regions are sensitive at the same time, the modelled waves generally produce synthetic jerks that are observed on regional scales and occur in a single SV component. However, high wave amplitudes during reflection from the stress-free CMB induce large-scale SV signals in all components, which results in a global contemporaneous jerk event such as that observed in 1969. In general, the identified events are periodic due to waves passing beneath locations at fixed intervals and the SV signals are smoothly varying. These smooth signals are more consistent with the geomagnetic jerks envisaged by Demetrescu and Dobrica than the sharp 'V' shapes that are typically associated with geomagnetic jerks. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据