4.4 Article

Nucleus-acoustic shock structures in a strongly coupled self-gravitating degenerate quantum plasma

期刊

PHYSICS OF PLASMAS
卷 23, 期 9, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4962686

关键词

-

资金

  1. Alexander von Humboldt (AvH) Stiftung (Germany)

向作者/读者索取更多资源

Nucleus-acoustic (NA) shock structures (SSs) are formed in a strongly coupled self-gravitating degenerate quantum plasma (SCSGDQP) system (e.g., white dwarfs) for the first time. The reductive perturbation method has been employed to identify the basic features of small, but finite amplitude NA SSs. The SCSGDQP is assumed to be composed of strongly coupled non-degenerate heavy nuclei, weakly coupled degenerate light nuclei, and non-relativistically and ultra-relativistically degenerate electrons. It is shown for the first time that the strong correlation among heavy nuclei acts as a source of dissipation and is responsible for the formation of the NA SSs, and that the NA SSs exist with positive (negative) electrostatic (self-gravitational) potential. It also observed that the effects of ultra-relativistically degenerate electrons and of the dynamics and degenerate pressure of light nuclei significantly modify the basic features (viz., speed, amplitude, and width) of the NA SSs. The implications of our results to the astrophysical compact objects like white dwarfs are briefly discussed. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据