4.8 Article

Nonadditive Compositional Curvature Energetics of Lipid Bilayers

期刊

PHYSICAL REVIEW LETTERS
卷 117, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.117.138104

关键词

-

资金

  1. Intramural Research Program of the National Institutes of Health (NIH)
  2. National Heart, Lung, and Blood Institute (NHLBI)
  3. Eunice Kennedy Schriver National Institute of Child Health and Human Development
  4. NIH [P20GM104316-01, P41GM103712-S1]

向作者/读者索取更多资源

The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据