4.8 Article

Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials

期刊

PHYSICAL REVIEW LETTERS
卷 117, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.117.135501

关键词

-

资金

  1. X-ray Free Electron Laser Priority Strategy Program (MEXT)
  2. Grants-in-Aid for Scientific Research [24000006, 26310205] Funding Source: KAKEN

向作者/读者索取更多资源

Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray freeelectron laser, we substantiate experimentally that, in both GeTe and Ge2Sb2Te5 crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据