4.6 Article

Theoretical insights into the promotion effect of subsurface boron for the selective hydrogenation of CO to methanol over Pd catalysts

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 31, 页码 21720-21729

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp02735k

关键词

-

资金

  1. ShanghaiTech University

向作者/读者索取更多资源

The activity and selectivity of methanol synthesis from syngas have been studied for decades from both experimental and theoretical aspects. In this work, CO hydrogenation to methanol on both Pd(211) and subsurface boron-modified Pd(211) surfaces is investigated based on density functional theory calculations. Methane formation is considered as the main competitive reaction in the process and all the barriers and reaction energies involved are also calculated. We find that the modification of boron atoms will not alter the corresponding favored reaction pathways to produce methanol and methane on Pd(211), namely CO -> CHO -> CHOH -> CH2OH -> CH3OH for methanol formation and CO -> COH -> C -> CH -> CH2 -> CH3 -> CH4 for methane formation. In addition, by using a two-step model to estimate the effective barriers for methanol and methane formation, the activity and selectivity for the product formation could be obtained and compared. It is found that the addition of boron atoms would significantly increase the activity of methanol formation while the activity of methane formation on clean and boron modified Pd surfaces is similar. Furthermore, we find that the hydrogenation of CO over clean Pd(211) will give high methane selectivity, whilst the boron modified Pd(211) mainly produces methanol. All these observed results can be explained by the electronic interaction between boron atoms and local Pd atoms through the lattice strain effect and alloying effect, resulting in the downshift of the d-band center of surface Pd away from the Fermi level. Finally, an extended Bronsted-Evans-Polanyi (BEP) relationship is found between the energies of the transition states and the initial/final states for hydrogenation/dissociation reactions, which may provide significant insight into the activity and selectivity of the catalysts for methanol synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据