4.6 Article

Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 7, 页码 5253-5263

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp07295f

关键词

-

资金

  1. CSIR
  2. DST-SERB Project, Government of India [GAP 0616, SR/S3/ME/0035/2012]

向作者/读者索取更多资源

A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 degrees C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N-2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (alpha-MnO2, Mn5O8, and alpha-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (alpha-MnO2 + Mn5O8) nanorods with a higher Mn3+ concentration had the best catalytic efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据