4.6 Article

Enhanced low-temperature ionic conductivity via different Li+ solvated clusters in organic solvent/ionic liquid mixed electrolytes

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 36, 页码 25458-25464

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp04766a

关键词

-

资金

  1. Chalmers Areas of Advance Materials Science, Energy and Transport
  2. Swedish Research Council
  3. Swedish Energy Agency
  4. FORMAS

向作者/读者索取更多资源

We investigate Li+ coordination in mixed electrolytes based on ionic liquids (ILs) and organic solvents and its relation with the macroscopic properties such as phase behaviour and ionic conductivity. Using Raman spectroscopy we determine the solvation shell around Li+ in mixtures formed by the IL N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide, the organic solvents ethylene carbonate and dimethyl carbonate (EC : DMC 1 : 1), and the salt LiTFSI. We find that the organic solvent molecules preferentially solvate Li+ as long as there are enough of them. Our results are consistent with a model where Li(EC)(3)(DMC)(1) and Li(EC)(2)(DMC)(2) are the main complexes formed by the organic solvent molecules and where TFSI- mainly participates in Li(TFSI)(2)(-) clusters. As the amount of organic solvent is increased, the number of TFSI- around Li+ rapidly decreases showing a higher affinity of the organic solvents to solvate Li+. The changes in the local configurations are also reflected in the ionic conductivity and the phase behaviour. The formation of larger clusters leads to a decrease in the conductivity, whereas the presence of several different clusters at intermediate compositions effectively hinders crystallization at low temperatures. The result is an enhanced low-temperature ionic conductivity in comparison with the pure IL or organic solvent electrolytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据