4.6 Article

The thermoelectrochemistry of lithium-glyme solvate ionic liquids: towards waste heat harvesting

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 30, 页码 20768-20777

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp02255c

关键词

-

资金

  1. Australian Research Council [ARC DECRA DE130100770]

向作者/读者索取更多资源

Thermoelectrochemistry offers a simple, scalable technique for direct conversion of waste heat into useful electricity. Here the thermoelectrochemical properties of lithium-glyme solvate ionic liquids, as well as their dilute electrolyte analogues, have been investigated using mixtures of tetraglyme (G4, tetraethylene glycol dimethyl ether) and lithium bis(trifluoromethylsulfonyl) imide (Li[NTf2]). The thermoelectrochemical process is entropically-driven by release of the glyme from the lithium-glyme complex cation, due to electrodeposition of lithium metal at the hotter lithium electrode with concomitant electrodissolution at the cooler lithium electrode. The optimum ratio for thermochemical electricity generation is not the solvate ionic liquid (equimolar mixture of Li[NTf2] and glyme), but rather one Li[NTf2] to four G4, due to the mixtures relatively high ionic conductivity and good apparent Seebeck coefficient (+1.4 mV K-1). Determination of the lithium-glyme mixture thermal conductivity enabled full assessment of the Figure of Merit (ZT), and the efficiency relative to the Carnot efficiency to be determined. As the lithium electrodeposits are porous, alternating the temperature gradient results in a system that actually improves with repeated use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据