4.6 Article

Transport properties and electroresistance of a manganite based heterostructure: role of the manganite-manganite interface

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 26, 页码 17740-17749

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp02053d

关键词

-

资金

  1. Inter University Accelerator Centre, New Delhi [BTR 57309]
  2. UGC, New Delhi of UGC (BSR) Meritorious Fellowship [F.25-1/2013-14(BSR)/7-156/2007(BSR), F.25-1/2014-15(BSR)/7-156/2007(BSR)]

向作者/读者索取更多资源

In this paper, we report the results of the investigations on the transport properties performed across the manganite-manganite interface in the LaMnO3-delta/La0.7Ca0.3MnO3/LaAlO3 (LMO/LCMO/LAO) heterostructure. The bilayered heterostructure was synthesized by a low cost and simple chemical solution deposition (CSD) method by employing the acetate precursor route. The same LMO/LCMO/LAO heterostructure was also grown using the dry metal oxide chemical vapor deposition (CVD) method and the results of transport characterization have been compared on the basis of wet and dry chemical methods used. XRD Phi-scan measurements were carried out to verify the structural quality and crystallographic orientations of LMO and LCMO manganite layers, for both wet and dry chemical method grown heterostructures. For wet and dry chemical methods, the temperature dependent resistance of the LMO/LCMO interface suggests the metallic nature. The asymmetric I-V curves collected at different temperatures show normal diode characteristics which get transformed to backward diode characteristics at high temperatures under high applied voltages at V-tr for both the methods. The values of V-tr are strongly dependent on the chemical method used. I-V data have been fitted using the Simmons model at different temperatures and discussed in terms of the spin-flip scattering mechanism for both wet and dry chemical method grown heterostructures. The electric field dependent electroresistance (ER) behavior of the presently studied LMO/LCMO manganite-manganite interface, grown using wet and dry chemical methods, has been understood on the basis of complex mechanisms including charge injection, formation of the depletion region, the tunneling effect, thermal processes and junction breakdown and their dependence on the applied electric field, field polarity and temperature studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据