4.6 Article

Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 8, 页码 6113-6121

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp06711a

关键词

-

资金

  1. National Natural Science Foundation of China [51302108]
  2. Natural Science Foundation of Jiangsu Province [BK20130151]
  3. Fundamental Research Funds for the Central Universities [JUSRP51408B]

向作者/读者索取更多资源

Two groups of BiOBr nanosheets with different sizes and similar exposure percentages of {001} facets were selectively synthesized by simple hydrothermal methods. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity was estimated from the degradation of organic pollutants under visible-light irradiation. The results indicated that BiOBr, nanosheets with similar exposure percentages of {001} facets but smaller sizes exhibited higher photocatalytic activity. Furthermore, the effects of the size, including the thickness and length, of BiOBr nanosheets were also studied. The results showed that the impact of thickness was more significant than that of length. It was found that reducing the thickness of BiOBr nanosheets can significantly increase the exposed surface areas of {001} facets (S{001}), but not necessarily the exposure percentage of {001} facets. Moreover, in our experiment, the photocatalytic activity of BiOBr nanosheets increased linearly with an increase in S-{001} in the range of 0.022 to 0.111 nm(-1). Therefore, the photocatalytic activity of BiOBr nanosheets depended on the exposed surface areas of {001} facets rather than the exposure percentage of {001} facets. The enhancement of the photocatalytic activity of ultrathin BiOBr nanosheets with large exposed surface areas of {001} facets can be mainly ascribed to their enhanced absorption of visible light and improved separation efficiency of charge carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据