4.6 Article

Novel nanorose-like Ce(III)-doped and undoped Cu(II)-biphenyl-4,4-dicarboxylic acid (Cu(II)-BPDCA) MOSs as visible light photocatalysts: synthesis, characterization, photodegradation of toxic dyes and optimization

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 16, 页码 11278-11287

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp00910g

关键词

-

资金

  1. Research Council of the Yasouj University
  2. Iran National Science Foundation [94/(sic)/41301]

向作者/读者索取更多资源

A novel nanorose-like metal organic system (MOS) based on Cu(II) and biphenyl-4,4-dicarboxylic acid (Cu-BPDCA) was hydrothermally synthesized and characterized via EDS, FE-SEM, XRD, DRS and FT-IR analysis. This novel nanomaterial was found to be of narrow energy band gap (1.24 eV) and thus it was applied as a photocatalyst driven by visible light for the degradation of the rose bengal (RB) and eosin Y (EY) dyes. For further improvement in the photocatalytic performance of Cu-BPDCA, it was doped with a trace amount of Ce(III) in a simple way followed by characterization. The achieved improvement is due to the formation of a large number of O-2(-center dot) and (OH)-O-center dot radicals compared to the case of undoped Cu-BPDCA. The influence of important variables such as initial dye concentration, photocatalyst dosage and time of irradiation on the photocatalytic degradation efficiency was studied and optimized using central composite design. The optimum condition for the photodegradation of RB was found to be 40 min, 4.0 mg L-1 and 0.015 g, corresponding to the irradiation time, RB concentration and photocatalyst mass, respectively. The photodegradation of EY was optimized at 4.0, 76 min, 5.9 mg L-1 and 0.015 g corresponding to the pH, irradiation time, EY concentration and photocatalyst mass, respectively. At these optimum conditions, the photocatalytic degradation percentages of RB and EY with a desirability of 0.95 and 1.0 were found to be 78.90% and 67.63%, respectively. Kinetics study showed that the Langmuir-Hinshelwood kinetics model suitably fits the experimental data. From the Langmuir-Hinshelwood kinetics model, a significantly high photodegradation to surface adsorption ratio was obtained which is the great advantage of this work in addition to applying visible light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据