4.6 Article

Lithium storage on carbon nitride, graphenylene and inorganic graphenylene

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 21, 页码 14205-14215

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp07356a

关键词

-

资金

  1. Australian Research Council
  2. Australian Government
  3. Queensland Cyber Infrastructure Foundation (QCIF)
  4. University of Queensland Research Computing Centre

向作者/读者索取更多资源

We present results of density functional theory calculations on the lithium (Li) ion storage capacity of three different two dimensional porous graphene-like membranes. The graphitic carbon nitride membrane, g-CN, is found to have a large Li storage capacity of at least 813 mA h g(-1) (LiCN). However, it is also found that the Li interacts very strongly with the membrane indicating that this is most likely irreversible. According to the calculations, graphenylene or biphenylene carbon (BPC) has a storage capacity of 487 mA h g(-1) (Li15C6) which is higher than that for graphite. We also find that Li is very mobile on these materials and does not interact as strongly with the membrane making it a more suitable anode material. Inorganic graphenylene, which is a boron nitride analog of graphenylene, shows very low binding energies, much lower than the cohesive energy of lithium, and it appears to be unsuitable as an anode material for lithium ion batteries. We discuss how charge transfer leads to the very different behaviour observed in these three similar materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据