4.6 Article

Effect of Ag/Au bilayer assisted etching on the strongly enhanced photoluminescence and visible light photocatalysis by Si nanowire arrays

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 18, 期 11, 页码 7715-7727

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp07161e

关键词

-

资金

  1. CSIR [03(1270)/13/EMR-II]
  2. DEITY [5(9)/2012-NANO(VOL-II)]
  3. BRNS [2012/37P/1/BRNS]
  4. JSPS invitation fellowship

向作者/读者索取更多资源

We report on the strongly enhanced photoluminescence (PL) and visible light photocatalysis by arrays of vertically aligned single crystalline Si nanowires (NWs) grown by Ag/Au bilayer assisted etching. High resolution FESEM and TEM imaging reveals that the Si NWs are decorated with ultra-small size arbitrary shaped Si nanocrystals (NCs) due to the lateral etching of the NWs. A strong broad band and tunable visible to near-infrared (NIR) photoluminescence (PL) in the range 1.3-2.4 eV are observed for these Si NWs/NCs at room temperature, depending on the etching conditions. Our studies reveal that the visible-NIR PL intensity is about two orders of magnitude higher and it exhibits faster decay dynamics in the bilayer assisted etching case as compared to the Ag or Au single layer etching case. The enhanced PL in the bimetal case is attributed to the longer length and higher density of the Si NWs/NCs, surface plasmon resonance enhanced absorption by residual bimetal NPs and the enhanced radiative recombination rate. Studies on the time evolution of PL spectral features with laser exposure under ambient conditions and laser power dependence reveal that both the quantum confinement of carriers in Si NCs and the nonbridging oxygen hole defects in the SiOx layer contribute to the tunable PL. Interestingly, Si NWs grown by Ag/Au bilayer assisted etching exhibit enhanced photocatalytic degradation of methylene blue in comparison to Si NWs grown by single layer Ag or Au assisted etching. The Schottky barrier present between bimetallic NPs and nanoporous Si NWs with Si-H bonds facilitates the photocatalytic activity by efficient separation of photogenerated e-h pairs. Our results demonstrate the superiority of the Si NW array grown by bilayer assisted etching for their cutting edge applications in optoelectronics and environmental cleaning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据