4.7 Article

Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil

期刊

CHEMOSPHERE
卷 134, 期 -, 页码 528-535

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2014.11.074

关键词

Biochar; Pyrolysis; Hydrothermal carbonization; Sorption; Pesticide

向作者/读者索取更多资源

Carbon (C)-rich, solid products from pyrolysis (pyrochars) and hydrothermal carbonization (HTC, hydrochars) are expected to reduce the bioavailability and bioaccessibility of pesticides as side effect of soil addition. To compare effects of different feedstocks (digestate, miscanthus, woodchips) and production processes (pyrolysis at 750 degrees C, HTC at 200 degrees C and 250 degrees C), C-14-labeled isoproturon (IPU) was applied at 0.75 kg ha(-1) to loamy sand amended either with 0.5% or 5% pyrochars or hydrochars, which was then incubated for 50 d. Mineralization of IPU was measured as C-14-CO2 released from soil-char composites. Pore-water and methanol extractable C-14-IPU was quantified as well as non-extractable C-14-residues (NER). Furthermore, C mineralization of pyrochars, hydrochars and feedstocks was studied to assess the relationship between IPU bioaccessibility and char decomposability. In pure soil, 8.1% of applied IPU was mineralized after 50 d. This was reduced more strongly in pyrochar treatments (81 +/- 6% reduction) than in hydrochar treatments (56 +/- 25% reduction). Different feedstocks had no significantly different effect when 5% char was added, but their effect was significant and dependent on the production process in 0.5% amendments. Pesticide binding can occur by surface sorption as well as by diffusion and subsequent occlusion in micropores. The latter can be expected to result in high amounts of NER, as it was observed in the pyrochar treatments. Hydrochars were less stable than pyrochars and contained lower amounts of NER. Thus, in hydrochar amended soils, better accessibility of IPU to microbial degradation may be a result of full char decomposition within decades ensuring controlled pesticide degradation. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据