4.7 Article

Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrochemical reactor

期刊

CHEMOSPHERE
卷 136, 期 -, 页码 72-78

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.03.092

关键词

Chlorinated solvent; Trichloroethene; Reductive dechlorination; Bioelectrochemical system; Bioremediation; Mass transport phenomena

资金

  1. European Commission [265946]

向作者/读者索取更多资源

Microbial bioelectrochemical systems, which use solid-state cathodes to drive the reductive degradation of contaminants such as the chlorinated hydrocarbons, are recently attracting considerable attention for bioremediation applications. So far, most of the published research has focused on analyzing the influence of key (bio)electrochemical factors influencing contaminant degradation, such as the cathode potential, whereas only few studies have examined the potential impact of mass transport phenomena on process performance. Here we analyzed the performance of a flow-through bioelectrochemical reactor, continuously fed with a synthetic groundwater containing trichloroethene at three different linear fluid velocities (from 0.3 m d(-1) to 1.7 m d(-1)) and three different set cathode potentials (from -250 mV to -450 mV vs. the standard hydrogen electrode). The obtained results demonstrated that, in the range of fluid velocities which are characteristics for natural groundwater systems, mass transport phenomena may strongly influence the rate and extent of reductive dechlorination. Nonetheless, the relative importance of mass transport largely depends on the applied cathode potential which, in turn, controls the intrinsic kinetics of biological reactions and the underlying electron transfer mechanisms. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据