4.7 Article

S2O82-/UV-C and H2O2/UV-C treatment of Bisphenol A: Assessment of toxicity, estrogenic activity, degradation products and results in real water

期刊

CHEMOSPHERE
卷 119, 期 -, 页码 S115-S123

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2014.06.020

关键词

Bisphenol A; Acute toxicity; Yeast Estrogen Screen (YES) assay; S2O82-/UV-C and H2O2/UV-C treatments; Degradation products; Real freshwater matrix

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [111Y257]

向作者/读者索取更多资源

The performance of S2O82-/UV-C and H2O2/UV-C treatments was investigated for the degradation and detoxification of Bisphenol A (BPA). The acute toxicity of BPA and its degradation products was examined with the Vibrio fischeri bioassay, whereas changes in estrogenic activity were followed with the Yeast Estrogen Screen (YES) assay. LC and LC-MS/MS analyses were conducted to determine degradation products evolving during photochemical treatment. In addition, BPA-spiked real freshwater samples were also subjected to S2O82-/UV-C and H2O2/UV-C treatment to study the effect of a real water matrix on BPA removal and detoxification rates. BPA removal in pure water was very fast (<= 7 min) and complete via both H2O2/UV-C and S2O82-/UV-C treatment, accompanied with rapid and significant mineralization rates ranging between 70% and 85%. V. fischeri bioassay results indicated that degradation products being more toxic than BPA were formed at the initial stages of H2O2/UV-C whereas a rapid and steady reduction in toxicity was observed during S2O82-/UV-C treatment in pure water. UV-C treatment products exhibited a higher estrogenic activity than the original BPA solution while the estrogenicity of BPA was completely removed during H2O2/UV-C and S2O82-/UV-C treatments parallel to its degradation. 3-methylbenzoic and 4-sulfobenzoic acids, as well as the ring opening products fumaric, succinic and oxalic acids could be identified as degradation products. BPA degradation required extended treatment periods (>20 min) and TOC removals were considerably retarded (by 40%) in the raw freshwater matrix most probably due to its natural organic matter content (TOC = 5.1 mg L-1). H2O2/UV-C and S2O82-/UV-C treatment in raw freshwater did not result in toxic degradation products. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据