4.4 Article

Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice

期刊

PHOTOSYNTHESIS RESEARCH
卷 131, 期 3, 页码 281-289

出版社

SPRINGER
DOI: 10.1007/s11120-016-0320-4

关键词

Rubisco; Transketolase; Overproduction; CO2 assimilation; Rice

资金

  1. Japan Society for the Promotion of Science [26450074, JP16H02538]
  2. Grants-in-Aid for Scientific Research [26450074, 16H06379] Funding Source: KAKEN

向作者/读者索取更多资源

Metabolome analyses have indicated an accumulation of sedoheptulose 7-phosphate in transgenic rice plants with overproduction of Rubisco (Suzuki et al. in Plant Cell Environ 35:1369-1379, 2012. doi:10.1111/j.1365-3040.2012.02494.x). Since Rubisco overproduction did not quantitatively enhance photosynthesis even under CO2-limited conditions, it is suspected that such an accumulation of sedoheptulose 7-phosphate hampers the improvement of photosynthetic capacity. In the present study, the gene of transketolase, which is involved in the metabolism of sedoheptulose 7-phosphate, was co-overexpressed with the Rubisco small subunit gene in rice. Rubisco and transketolase were successfully overproduced in comparison with those in wild-type plants by 35-53 and 39-84 %, respectively. These changes in the amounts of the proteins were associated with those of the mRNA levels. However, the rate of CO2 assimilation under high irradiance and different [CO2] did not differ between co-overexpressed plants and wild-type plants. Thus, co-overproduction of Rubisco and transketolase did not improve photosynthesis in rice. Transketolase was probably not a limiting factor of photosynthesis as overproduction of transketolase alone by 80-94 % did not affect photosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据