3.8 Article

Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns

期刊

出版社

E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG
DOI: 10.1127/pfg/2016/0284

关键词

self-calibration; (in)direct sensor orientation; block deformation; UAV-based RTK; cross flight pattern; sensor synchronisation

向作者/读者索取更多资源

Unmanned aerial vehicles (UAV) are increasingly used for topographic mapping. Despite the flexibility gained when using those devices, one has to invest more effort for ground control measurements compared to conventional photo-grammetric airborne data acquisition, because positioning devices on UAVs are generally less accurate. Additionally, the limited quality of employed end-user cameras asks for self-calibration, which might cause some problems as well. A good distribution of ground control points (GCPs) is not only needed to solve for the absolute orientation of the image block in the desired coordinate frame, but also to mitigate block deformation effects which are resulting mainly from remaining systematic errors in the camera calibration. In this paper recent developments in the UAV-hardware market are picked up: some providers equip fixed-wing UAVs with RTK-GNSS-enabled 2-frequency receivers and set up a processing pipeline which allows them to promise an absolute block orientation in a similar accuracy range as through traditional indirect sensor orientation. Besides the analysis of the actually obtainable accuracy, when one of those systems is used, we examine the effect different flight directions and altitudes (cross flight) have onto the bundle adjustment. For this purpose two test areas have been prepared and flown with a fixed-wing UAV. Results are promising: not only the absolute image orientation gets significantly enhanced when the RTK-option is used, also block deformation is reduced. However, remaining offsets originating from time synchronization or camera event triggering should be considered during flight planning. In flat terrains a cross flight pattern helps to enhance results because of better and more reliable self-calibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据