4.4 Article

Different hollow and spherical TiO2 morphologies have distinct activities for the photocatalytic inactivation of chemical and biological agents

期刊

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
卷 15, 期 8, 页码 988-994

出版社

SPRINGERNATURE
DOI: 10.1039/c6pp00093b

关键词

-

资金

  1. Strategic International Collaborative Research Program (SICORP), JST

向作者/读者索取更多资源

The inactivation of Escherichia coli and Q beta phage was examined following their photocatalytic treatment with TiO2 hollows and spheres that had been prepared by electrospray, hydrothermal treatment, and calcination. The crystal structures of the hollows and spheres were assigned to TiO2 anatase, and the surface areas of the hollows and spheres were determined to be 91 and 79 m(2) g(-1,) respectively. Interestingly, TiO2 spheres exhibited higher anti-pathogen performance than TiO2 hollows, a difference we ascribe to the prevention of light multi-scattering by microorganisms covering the surfaces of the TiO2 particles. The photocatalytic decomposition of dimethyl sulfoxide (DMSO) in the presence of TiO2 hollows and spheres was examined in order to study the dependence of photocatalytic activity on TiO2 morphology for the size scale of the reactants. TiO2 hollows provided greater photocatalytic decomposition of DMSO than did TiO2 spheres, in contrast to the pattern seen for pathogen inactivation. Fabrication of photocatalysts will need to vary depending on what substance (e.g., organic compound or biological agent) is being targeted for environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据