4.5 Article

Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films

出版社

ROYAL SOC
DOI: 10.1098/rsta.2015.0311

关键词

NiTi; shape memory alloys; fatigue; thin films; superelasticity

资金

  1. German research foundation (DFG) within the priority program 1599 'Ferroic cooling'
  2. [NFS 1206397]
  3. [DOE DESC0005448]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1206397] Funding Source: National Science Foundation

向作者/读者索取更多资源

The positive influence of crystallographic compatibility on the thermal transformation stability has been already investigated extensively in the literature. However, its influence on the stability of the shape memory effect or superelasticity used in actual applications is still unresolved. In this investigation sputtered films of a highly compatible TiNiCuCo composition with a transformation matrix middle eigenvalue of 1 +/- 0.01 are exposed to thermal as well as to superelastic cycling. In agreement with previous results the thermal transformation of this alloy is with a temperature shift of less than 0.1K for 40 cycles very stable; on the other hand, superelastic degradation behaviour was found to depend strongly on heat treatment parameters. To reveal the transformation dissimilarities between the differently heat-treated samples, the microstructure has been analysed by transmission electron microscopy, in situ stress polarization microscopy and synchrotron analysis. It is found that good crystallographic stability is not a sufficient criterion to avoid defect generation which guarantees high superelastic stability. For the investigated alloy, a small grain size was identified as the determining factor which increases the yield strength of the composition and decreases the functional degradation during superelastic cycling. This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据