4.4 Article

Quantifying the grain boundary resistance against slip transfer by experimental combination of geometric and stress approach using stage-I-fatigue cracks

期刊

PHILOSOPHICAL MAGAZINE
卷 96, 期 32-34, 页码 3524-3551

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786435.2016.1235289

关键词

Grain boundary; crack propagation; slip transfer; interfacial fracture toughness; dislocation-free zone model; grain boundary resistance

资金

  1. Deutsche Forschungsgemeinschaft [MA3322/7, MO2672/1]

向作者/读者索取更多资源

In recent studies, many groups have investigated the interaction of dislocations and grain boundaries by bi-crystals and micro-specimen experiments. Partially, these experiments were combined with supplementary simulations by discrete dislocation dynamics, but quantitative data for the grain boundary resistance against slip transfer is still missing. In this feasibility study with first results, we use stage-I-fatigue cracks as highly localised sources for dislocations with well-known Burgers vectors to study the interaction between dislocations in the plastic zone in front of the crack tip and selected grain boundaries. The stress concentration at the grain boundary is calculated with the dislocation-free zone model of fracture using the dislocation density distribution in the plastic zone from slip trace height profile measurements by atomic force microscopy. The grain boundary resistance values calculated from common geometric models are compared to the local stress distribution at the grain boundaries. Hence, it is possible to quantify the grain boundary resistance and to combine geometric and stress approach for grain boundary resistance against slip transfer to a self-contained concept. As a result, the prediction of the grain boundary resistance effect based on a critical stress concept is possible with knowledge of the geometric parameters of the grain boundary only, namely the orientations of both participating grains and the orientation of the grain boundary plane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据