4.7 Review

The paracrine control of vascular motion. A historical perspective

期刊

PHARMACOLOGICAL RESEARCH
卷 113, 期 -, 页码 125-145

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2016.08.003

关键词

Vasomotion; Prostacyclin; Endothelium-derived NO; PVAT; Vasoactive adipoldne; EDHF; EDCF; Adventitia

资金

  1. Ayudas para la Financiacion de Actividades de Investigacion Dirigidas a Grupos de la UCLM [GI20163512]

向作者/读者索取更多资源

During the last quarter of the past century, the leading role the endocrine and nervous systems had on the regulation of vasomotion, shifted towards a more paracrine-based regulation. This begun with the recognition of endothelial cells as active players of vascular control, when the vessel's intimal layer was identified as the main source of prostacyclin and was followed by the discovery of an endothelium-derived smooth muscle cell relaxing factor (EDRF). The new position acquired by endothelial cells prompted the discovery of other endothelium-derived regulatory products: vasoconstrictors, generally known as EDCF5, endothelin, and other vasodilators with hyperpolarizing properties (EDHF5). While this research was taking place, a quest for the discovery of the nature of EDRF carried back to a research line commenced a decade earlier: the recently found intracellular messenger cGMP and nitrovasodilators. Both were smooth muscle relaxants and appeared to interact in a hormonal fashion. Prejudice against an unconventional gaseous molecule delayed the acceptance that EDRF was nitric oxide (NO). When this happened, a new era of research that exceeded the vascular field commenced. The discovery of the pathway for NO synthesis from L-arginine involved the clever assembling of numerous unrelated observations of different areas of knowledge. The last ten years of research on the paracrine regulation of the vascular wall has shifted to perivascular fat (PVAT), which is beginning to be regarded as the fourth layer of the vascular wall. Starting with the discovery of an adipose-derived relaxing substance (ADRF), the role that different adipokines have on the paracrine control of vasomotion is now filling the research activity of many vascular pharmacology labs, and surprising interactions between the endothelium, PVAT and smooth muscle are being unveiled. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据