4.7 Article

The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress

期刊

PHARMACOLOGICAL RESEARCH
卷 113, 期 -, 页码 290-299

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2016.09.006

关键词

Hydrogen sulphide; H2S-donors; Isothiocyanate; Myocardial ischemia/reperfusion; Cardioprotection; Mitochondrial potassium channels

向作者/读者索取更多资源

The endogenous gasotransmitter hydrogen sulphide (H2S) is an important regulator of the cardiovascular system, particularly of myocardial function. Moreover, H2S exhibits cardioprotective activity against ischemia/reperfusion (I/R) or hypoxic injury, and is considered an important mediator of ischemic pre-conditioning, through activation of mitochondrial potassium channels, reduction of oxidative stress, activation of the endogenous anti-oxidant machinery and limitation of inflammatory responses. Accordingly, H2S-donors, i.e. pro-drugs able to generate exogenous H2S, are viewed as promising therapeutic agents for a number of cardiovascular diseases. The novel H2S-donor 4-carboxy phenylisothiocyanate (4CPI), whose vasorelaxing effects were recently reported, was tested here in different experimental models of myocardial I/R. In Langendorff-perfused rat hearts subjected to I/R, 4CPI significantly improved the post-ischemic recovery of myocardial functional parameters and limited tissue injury. These effects were antagonized by 5-hydroxydecanoic acid (a blocker of mitoK(ATP) channels). Moreover, 4CPI inhibited the formation of reactive oxygen species. We found the whole battery of H2S-producing enzymes to be present in myocardial tissue: cystathionine gamma-lyase (CSE), cystathionine beta-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). Notably, 4CPI down-regulated the post-ischemic expression of CSE. In Langendorff-perfused mouse hearts, 4CPI reduced the post-ischemic release of norepinephrine and the incidence of ventricular arrhythmias. In both rat and mouse hearts, 4CPI did not affect the degranulation of resident mast cells. In isolated rat cardiac mitochondria, 4CPI partially depolarized the mitochondrial membrane potential; this effect was antagonized by ATP (i.e., the physiological inhibitor of K-ATP channels). Moreover, 4CPI abrogated calcium uptake in the mitochondrial matrix. Finally, in an in vivo model of acute myocardial infarction in rats, 4CPI significantly decreased I/R-induced tissue injury. In conclusion, H2S-donors, and in particular isothiocyanate-based H2S-releasing drugs like 4CPI, can actually be considered a suitable pharmacological option in anti-ischemic therapy. (C) 2016 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据