4.6 Article

Influence of Long-Term Fertilization on Selenium Accumulation in Soil and Uptake by Crops

期刊

PEDOSPHERE
卷 26, 期 1, 页码 120-129

出版社

SCIENCE PRESS
DOI: 10.1016/S1002-0160(15)60028-5

关键词

agricultural soil; essential nutrient; fertilizer practices; Se deficiency; Se fractions

资金

  1. National Basic Research Program (973 Program) of China [2011CB100506]
  2. China Agriculture Research System-Wheat [CARS-03-02A]
  3. Chinese Academy of Sciences [KSCX2-EW-N-08]

向作者/读者索取更多资源

Continuous applications of organic and inorganic fertilizers can affect soil and food quality with respect to selenium (Se) concentrations. A long-term (over 20 years) experimental field study, started in 1989, was conducted to investigate the changes in soil Se fractions and its uptake by crops, as affected by different fertilizer practices, in the North China Plain with an annual crop rotation of winter wheat and summer maize. The long-term experiment was arranged in a complete randomized block design consisting of 4 replications with 7 fertilizer treatments: 1) organic compost (OC), 2) half organic compost plus half N-P-K chemical fertilizers (OC + NPK), 3) N-P-K fertilizers (NPK), 4) N-P fertilizers (NP), 5) P-K fertilizers (PK), 6) N-K fertilizers (NK), and 7) an un-amended control. Soil samples from the surface (20 cm) were collected in 1989, 1994, 1999, 2004 and 2009 to characterize Se and other soil properties. In 2009, the average soil Se concentrations in the treatments (149 +/- 8 mu g kg(-1)) were higher than those in the soil samples collected in 1989 at the beginning of the experiment (112 +/- 4 mu g kg(-1)), and decreased in the order of OC > OC NPK > NPK approximate to NP > PK approximate to NK > control. Sequential extraction showed the oxidizable fraction (50.06% 3.94%) was the dominant form of Se in the soil, followed by the residual fraction (24.12% +/- 2.89%), exchangeable fraction (15.09% +/- 4.34%) and Fe-Mn oxides fraction (10.73% +/- 4.04%). With an increase of soil K, the exchangeable Se concentrations in the soil increased. The Se concentrations in the soil tillage layer (0-20 cm) were mainly related to soil organic carbon (SOC), although different contributions came from atmospheric deposition, irrigation and fertilizers. With the accumulation of SOC, the uptakes of soil Se by two crops were inhibited. For the OC and OC + NPK treatments, Se concentrations in wheat grains were lower than the critical standard of Se in stable food (100 mu g kg(-1)). Additionally, Se concentrations in grains were also decreased by the deficiencies of major soil nutrients, especially P.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据