4.5 Review

Chronic granulomatous disease: Clinical, molecular, and therapeutic aspects

期刊

PEDIATRIC ALLERGY AND IMMUNOLOGY
卷 27, 期 3, 页码 242-253

出版社

WILEY
DOI: 10.1111/pai.12527

关键词

chronic granulomatous disease; NADPH oxidase; molecular diagnosis; genetic counseling; infections; hyperinflammation; therapy

向作者/读者索取更多资源

Chronic granulomatous disease (CGD) is a rare primary immunodeficiency caused by defects in the genes encoding any of the NADPH oxidase components responsible for the respiratory burst of phagocytic leukocytes. CGD is a genetically heterogeneous disease with an X-linked recessive (XR-CGD) form caused by mutations in the CYBB gene encoding the gp91(phox) protein, and an autosomal recessive (AR-CGD) form caused by mutations in the CYBA, NCF1, NCF2, or NCF4 genes encoding p22(phox), p47(phox), p67(phox), and p40(phox), respectively. Patients suffering from this disease are susceptible to severe life-threatening bacterial and fungal infections and excessive inflammation characterized by granuloma formation in any organ, for instance, the gastrointestinal and genitourinary tract. An early diagnosis of and the prompt treatment for these conditions are crucial for an optimal outcome of affected patients. To prevent infections, CGD patients should receive lifelong antibiotics and antifungal prophylaxis. These two measures, as well as newer more effective antimicrobials, have significantly modified the natural history of CGD, resulting in a remarkable change in overall survival, which is now around 90%, reaching well into adulthood. At present, hematopoietic stem cell transplantation (HSCT) is the only definitive treatment that can cure CGD and reverse organ dysfunction. Timing, donor selection, and conditioning regimens remain the key points of this therapy. In recent years, gene therapy (GT) for XR-CGD has been proposed as an alternative to HSCT for CGD patients without a matched donor. After the failure of the first trials performed with retroviral vectors, some groups have proposed the use of regulated SIN-lentiviral vectors targeting gp91(phox) expression in myeloid cells to increase the safety and efficacy of the GT protocols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据