4.6 Article

Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy

期刊

OPTICS EXPRESS
卷 24, 期 24, 页码 28080-28090

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.24.028080

关键词

-

类别

资金

  1. European Molecular Biology Laboratory (EMBL)
  2. Deutsche Forschungsgemeinschaft [DFG RI 2380/2]

向作者/读者索取更多资源

Single-molecule localization microscopy (SMLM) relies on the switching of fluorescent molecules between a fluorescent and a dark state to achieve super resolution. This process is inherently dependent on the intensity distribution of the laser light used for both activation from the dark state and excitation of the bright state. Typically, laser light is coupled directly or via a single-mode fiber into the microscope, which leads to a Gaussian intensity profile in total internal reflection (TIR) or epi illumination. As a result, switching dynamics and brightness of the fluorescent molecules vary strongly across the field of view, impacting their localization precision and impeding quantitative analysis. Here we present a simple illumination scheme based on the use of a multimode fiber and a laser speckle-reducer, which results in a flat, homogeneous and speckle-free illumination across the entire field of view. In addition, we combined homogeneous multimode excitation of the sample with single-mode based TIR activation to simultaneously obtain the advantages of both approaches: uniform brightness of single fluorophores and TIR-like optical sectioning. (C) 2016 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据