4.7 Article

Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry

期刊

OPTICS AND LASERS IN ENGINEERING
卷 87, 期 -, 页码 75-82

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlaseng.2015.12.017

关键词

Three-dimensional profilometry; Industrial solids profilometry; Co-phase demodulation; Temporal phase-unwrapping; Fringe-pattern phase-demodulation

类别

资金

  1. Mexican Council for Science and Technology (Consejo Nacional de Ciencia y Tecnologia, CONACYT) [157044-F]

向作者/读者索取更多资源

In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently published methods: co-phased profilometry and, two-steps temporal, phase-unwrapping. By doing this, we obtain a new and more powerful 3D profilometry technique which overcomes the two main limitations of previous fringe projection profilometers namely: high phase-sensitivity digitalization of discontinuous objects and solid's self-generated shadow minimization. This new 3D profilometer is demonstrated by an experiment digitizing a discontinuous 3D industrial-solid where the advantages of this new profilometer with respect to previous art are clearly shown. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据