4.8 Article

Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide Composite: The Role of Oxygen

期刊

CHEMISTRY OF MATERIALS
卷 27, 期 5, 页码 1612-1621

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm504265w

关键词

-

资金

  1. Changsha Science and Technology Plan Projects [k1403067-11]

向作者/读者索取更多资源

The reduced graphene oxide (RGO)-based composites have attracted intensive attention in research due to its superior performance as photocatalysts, but still lacking is the theoretical understanding on the interactions between constituents, as well as the connection between such interaction and the enhanced photoactivity. Herein, the interaction between the g-C3N4 and RGO sheets is systematically explored by using state-of-the-art hybrid density functional theory. We demonstrate that the O atom plays a crucial role in the RGO-based composites. Compared to the isolated g-C3N4 monolayer, the band gap of composites obviously decreases, and at higher O concentration, the levels in the vicinity of Fermi level are much more dispersive, indicating the smaller effective mass of the carrier. These changes are nonlinear on the O concentration. Interestingly, appropriate O concentration alters the direct-gap composite to indirect-gap one. Most importantly, at a higher O concentration, a type-II, staggered band alignment can be obtained in the g-C3N4-RGO interface, and negatively charged O atoms in the RGO are active sites, leading to the high hydrogen-evolution activity. Furthermore, the calculated absorption spectra which vary with the O concentration shed light on different experimental results. The findings pave the way for developing RGO-based composites for photocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据