4.6 Article

Structural and optical properties of vanadium doped SnO2 nanoparticles synthesized by the polyol method

期刊

OPTICAL MATERIALS
卷 54, 期 -, 页码 139-146

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2016.01.059

关键词

Polyol; Nanoparticles; SnO2; Doping; Vanadium; Optical properties

向作者/读者索取更多资源

Nanocrystalline mesoporous pure and vanadium-doped (0-10 at%) SnO2 nanopowders were prepared by the polyol route. Compositional, textural and structural properties of pure and V-doped SnO2 nanopowders were thoroughly characterized by FTIR, XRD, TEM, DTA/TGA/MS, N-2 sorption porosimetry and UV-visible Diffuse Reflectance Spectroscopy. According to XRD patterns, undoped and V-doped SnO2 materials exhibited the typical rutile-type tetragonal structure of SnO2 with average crystallite sizes ranging from 8.8 to 5.4 nm when the vanadium content was increased up to 10 at%. As shown by UV-visible Diffuse Reflectance Spectroscopy, this decrease in particle size was accompanied by a decrease of the band gap energy value from 3.36 eV for pure SnO2 down to 2.2 eV for 10 at% V-doped SnO2. Moreover, both FTIR and EDX analyses assessed the presence of SnO2 and vanadium oxide species the amount of which increasing with the doping content. Finally, the nanopowders prepared were composed of a mesoporous network of aggregated nanoparticles with BET specific areas increasing from 46.6 +/- 1.5 to 61.7 +/- 2 m(2) g(-1) when the vanadium concentration was varied from 0 to 10 at%. The V-doped nanopowders prepared by the polyol method therefore showed all the required textural and structural features to be used as visible photocatalysts or active layer in gas sensors. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据