4.8 Article

Mechanism for Liquid Phase Exfoliation of MoS2

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 1, 页码 337-348

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b04224

关键词

-

资金

  1. Air Force Office of Scientific Research (AFOSR)
  2. Air Force Research Laboratory's Materials and Manufacturing Directorate

向作者/读者索取更多资源

A highly efficient, reproducible, and scalable approach for exfoliation of MoS2 is critical for utilizing these emerging materials from coatings and composites to printable devices. Additive-free techniques, such as solvent-assisted exfoliation via sonication, are considered to be the most viable approach, where N-methyl-2-pyrrolidone (NMP) is the most effective solvent. However, understanding the mechanism of exfoliation and the key role NMP plays during the process have been elusive and challenges effective improvements in product yield and quality. Here, we report systematic experiments to understand the mechanism of solvent-assisted exfoliation by elucidating the sonolysis chemistries associated with NMP. It is confirmed that in the presence of O-2(g) dissolved moisture in NMP plays a critical role during sonication. The higher the moisture content, the more efficient the exfoliation process is. Conversely, when exfoliations are carried out with dried solvents with an inert atmosphere, reaction yields decrease. This is due to redox-active species formed in situ through an autoxidation pathway that converts NMP to N-methyl succinimide by hydroperoxide intermediates. These highly reactive species appear to aid exfoliation by oxidation at reactive edge sites; the charging creates Coulombic repulsion between neighboring sheets that disrupts interlayer basal plane bonding and enables electrostatic stabilization of particles in high-dipole solvents. From these insights, exfoliation in previously reported inactive solvents (e.g., acetonitrile), as well as in the absence of probe sonication, is demonstrated. These findings illustrate that exfoliation of MoS2, and possibly TMD's in general, can be mediated through understanding the chemistry occurring at the surface-solvent interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据