4.3 Article

Monsoons to Mixing in the Bay of Bengal Multiscale Air-Sea Interactions and Monsoon Predictability

期刊

OCEANOGRAPHY
卷 29, 期 2, 页码 18-27

出版社

OCEANOGRAPHY SOC
DOI: 10.5670/oceanog.2016.35

关键词

-

资金

  1. Department of Science and Technology, Government of India
  2. IISER, Pune

向作者/读者索取更多资源

Skillful prediction of the active and break spells of monsoon intraseasonal oscillations during the South Asian monsoon season is crucial for the socio-economic fate of one-sixth of the world's population, yet it remains a grand challenge problem. The limited skill of our coupled weather and climate models is largely due to our inability to represent the complex multiscale interactions of the north Indian Ocean and the atmosphere. Air-sea interactions are at the heart of not only the climatological mean annual cycle of the South Asian monsoon but also its synoptic, subseasonal, interannual, and decadal variability. With high local monsoon precipitation and discharge from major rivers (Ganges-Brahmaputra, Irrawaddy), the Bay of Bengal (BoB) exhibits the lowest surface salinities in the tropics as well as unique thermal stratification, making it a natural laboratory for studying multiscale interactions ranging from planetary-scale monsoons to submesoscale mixing in freshwater pools. The current ocean component of coupled models is inadequate for simulating the BoB's upper-ocean thermal structure with fidelity. To further improve monsoon forecasts on intraseasonal and interannual time scales, we need new high-resolution and high-frequency observations over the BoB to fill the gap in our understanding of how the ocean mixes in highly fresh regions, and we need modeling of processes that will convert this understanding to parameterizations of mixing that can be used to improve large-scale ocean models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据