4.6 Article

Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 2-Joint physical and biological data assimilation twin experiments

期刊

OCEAN MODELLING
卷 106, 期 -, 页码 146-158

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ocemod.2016.09.003

关键词

Coupled data assimilation; Biogeochemical model; 4DVAR; California Current System

资金

  1. Gordon and Betty Moore Foundation
  2. National Oceanographic and Atmospheric Administration office of Oceanic and Atmospheric Research [NA10OAR4320156]

向作者/读者索取更多资源

Coupled physical and biological data assimilation is performed within the California Current System using model twin experiments. The initial condition of physical and biological variables is estimated using the four-dimensional variational (4DVar) method under the Gaussian and lognormal error distributions assumption, respectively. Errors are assumed to be independent, yet variables are coupled by assimilation through model dynamics. Using a nutrient-phytoplankton-zooplankton-detritus (NPZD) model coupled to an ocean circulation model (the Regional Ocean Modeling System, ROMS), the coupled data assimilation procedure is evaluated by comparing results to experiments with no assimilation and with assimilation of physical data and biological data separately. Independent assimilation of physical (biological) data reduces the root-mean-squared error (RMSE) of physical (biological) state variables by more than 56% (43%). However, the improvement in biological (physical) state variables is less than 7% (13%). In contrast, coupled data assimilation improves both physical and biological components by 57% and 49%, respectively. Coupled data assimilation shows robust performance with varied observational errors, resulting in significantly smaller RMSEs compared to the free run. It still produces the estimation of observed variables better than that from the free run even with the physical and biological model error, but leads to higher RMSEs for unobserved variables. A series of twin experiments illustrates that coupled physical and biological 4DVar assimilation is computationally efficient and practical, capable of providing the reliable estimation of the coupled system with the same and ready to be examined in a realistic configuration. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据