4.4 Article

Experimental validation of gallium production and isotope-dependent positron range correction in PET

出版社

ELSEVIER
DOI: 10.1016/j.nima.2016.01.013

关键词

Radioisotope production; Positron emission tomography; Positron range; Ga-66; Ga-68

资金

  1. Spanish MINECO [FPA2010-17142, FPA2013-41267-P, CSD-2007-00042, RTC-2015-3772-1]
  2. Comunidad de Madrid via the TOPUS project [S2013/MIT-3024]

向作者/读者索取更多资源

Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with Ga-68 and Ga-66 radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a Ga-68 and Ga-66 phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with Ga-68 and Ga-66 radioisotopes in proton therapy. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据