4.3 Article

Enhanced Modulation Bandwidth by Integrating 2D Semiconductor and Quantum Dots for Visible Light Communication

期刊

ADVANCED PHOTONICS RESEARCH
卷 4, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/adpr.202300166

关键词

nanorods; nonradiative energy transfer; surface plasmon; transition metal dichalcogenides

向作者/读者索取更多资源

This study reports a significant enhancement in the modulation bandwidth of visible light communication (VLC) by integrating a two-dimensional semiconductor and quantum dots emitter. By integrating a WSe2 monolayer into an Au-nanorod-decorated CdSe/ZnS quantum dots emitter, high modulation performance is achieved. The hybrid quantum dot-gold-tungsten disulfide (QD-Au-WSe2) emitter exhibits a higher modulation bandwidth (130 MHz) compared to pristine quantum dots and a QD-WSe2 heterostructure without Au nanorods (79 and 91 MHz, respectively). The increased transition rate of quantum dot excitons is attributed to the integration of Au nanorods and WSe2 monolayer, which is supported by a reduction in average carrier lifetime observed from time-resolved photoluminescence analysis. This approach and findings provide an opportunity for the application of two-dimensional semiconductors in next-generation miniature VLC devices for high-speed optical communications.
Light-emitting devices present a tremendous potential for visible light communication (VLC) due to their dual functionality as both communication and lighting devices. Herein this study, the significant enhancement in VLC modulation bandwidth by integrating two-dimensional (2D) semiconductor and quantum dots (QDs) emitter is reported. Generally, the modulation bandwidth of CdSe-based QDs is limited to only less than 25 MHz; however, with the proposed hybrid emitter, a maximum modulation bandwidth of 130 MHz for CdSe/ZnS QDs emitter is able to be achieved. The WSe2 monolayer is integrated into an Au-nanorod-decorated CdSe/ZnS QDs emitter to achieve high modulation performance. The modulation bandwidth of the hybrid QD-Au-WSe2 emitter (130 MHz) is found to be higher than those of the pristine QDs and QD-WSe2 heterostructure without Au nanorods (79 and 91 MHz, respectively). A significant increase is observed in the transition rate of QDs excitons when they are integrated with Au nanorods and WSe2 monolayer, which is substantiated by a reduction in average carrier lifetime from time-resolved photoluminescence analysis. This approach and the findings open an opportunity to apply 2D semiconductors into the next-generation miniature VLC devices, for high-speed optical communications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据