4.2 Article

Phosphate (Bio)mineralization Remediation of Sr-90-Contaminated Groundwaters

期刊

ACS ES&T WATER
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsestwater.3c00159

关键词

bioremediation; in situ; mineralization; groundwater; radiostrontium

向作者/读者索取更多资源

Injection of saturated calcium phosphate solution has the potential to reduce the concentration of strontium-90 in contaminated groundwater, making it a valuable tool for remediating radioactivity at nuclear sites.
Historical operations at nuclear mega-facilities such as Hanford, USA, and Sellafield, UK have led to a legacy of radioactivity-contaminated land. Calcium phosphate phases (e.g., hydroxyapatite) can adsorb and/or incorporate radionuclides, including Sr-90. Past work has shown that aqueous injection of Ca-phosphate-generating solutions into the contaminated ground on both laboratory and field scales can reduce the amount of aqueous Sr-90 in the systems. Here, two microbially mediated phosphate amendment techniques which precipitated Ca-phosphate, (i) Ca-citrate/Na-phosphate and (ii) glycerol phosphate, were tested in batch experiments alongside an abiotic treatment ((iii) polyphosphate), using stable Sr and site relevant groundwaters and sediments. All three amendments led to enhanced Sr removal from the solution compared to the sediment-only control. The Ca-citrate/Na-phosphate treatment removed 97%, glycerol phosphate 60%, and polyphosphate 55% of the initial Sr. At experimental end points, scanning electron microscopy showed that Sr-containing, Ca phosphate phases were deposited on sediment grains, and XAS analyses of the sediments amended with Ca-citrate/Na-phosphate and glycerol phosphate confirmed Sr incorporation into Ca-phosphates occurred. Overall, Ca-phosphate-generating treatments have the potential to be applied in a range of nuclear sites and are a key option within the toolkit for Sr-90 groundwater remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据