4.6 Article

A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity

期刊

NEW PHYTOLOGIST
卷 213, 期 4, 页码 1802-1817

出版社

WILEY
DOI: 10.1111/nph.14302

关键词

Arabidopsis thaliana; basal immunity; biotic stress network; effectortriggered; immunity (ETI); RNA-seq; transcriptional reprogramming

资金

  1. Max-Planck Society and an Alexander von Humboldt Foundation postdoctoral fellowship
  2. International Max-Planck Research School (IMPRS) doctoral fellowship
  3. China Scholarship Council
  4. Deutsche Forschungsgemeinschaft SFB 680 (Molecular Basis of Evolutionary Innovations)

向作者/读者索取更多资源

Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SAindependent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据