4.6 Article

Weak coordination between leaf structure and function among closely related tomato species

期刊

NEW PHYTOLOGIST
卷 213, 期 4, 页码 1642-1653

出版社

WILEY
DOI: 10.1111/nph.14285

关键词

CO2 diffusion; evolution; leaf economics spectrum; leaf gas exchange; leaf mass per area; photosynthesis; Rubisco; Solanum

资金

  1. Evo-Devo-Eco Network (EDEN) research exchange (NSF IOS) [0955517]
  2. Plan Nacional, Spain [AGL2013-42364-R]

向作者/读者索取更多资源

Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resourceacquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e. g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据