4.6 Article

Percolation assisted excitation transport in discrete-time quantum walks

期刊

NEW JOURNAL OF PHYSICS
卷 18, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/18/2/023040

关键词

quantum walk; quantum transport; percolation

资金

  1. MSMT [RVO 68407700]
  2. GAER [14-02901P, 13-33906S]

向作者/读者索取更多资源

Coherent transport of excitations along chains of coupled quantum systems represents an interesting problem with a number of applications ranging from quantum optics to solar cell technology. A convenient tool for studying such processes are quantum walks. They allow us to determine all the process features in a quantitative way. We study the survival probability and the transport efficiency on a simple, highly symmetric graph represented by a ring. The propagation of excitation is modeled by a discrete-time (coined) quantum walk. For a two-state quantum walk, where the excitation (walker) has to leave its actual position to the neighboring sites, the survival probability decays exponentially and the transport efficiency is unity. The decay rate of the survival probability can be estimated using the leading eigenvalue of the evolution operator. However, if the excitation is allowed to stay at its present position, i.e. the propagation is modeled by a lazy quantum walk, then part of the wave-packet can be trapped in the vicinity of the origin and never reaches the sink. In such a case, the survival probability does not vanish and the excitation transport is not efficient. The dependency of the transport efficiency on the initial state is determined. Nevertheless, we show that for some lazy quantum walks dynamical, percolations of the ring eliminate the trapping effect and efficient excitation transport can be achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据