4.6 Article

Stochastic switching between multistable oscillation patterns of the Min-system

期刊

NEW JOURNAL OF PHYSICS
卷 18, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/18/9/093049

关键词

stochastic dynamics; particle-based computer simulations; biological pattern formation; self-organization; multistability; geometry sensing

资金

  1. BMBF program ImmunoQuant
  2. German Academic Scholarship Foundation

向作者/读者索取更多资源

The spatiotemporal oscillation patterns of the proteins MinD and MinE are used by the bacterium E. coli to sense its own geometry. Strikingly, both computer simulations and experiments have recently shown that for the same geometry of the reaction volume, different oscillation patterns can be stable, with stochastic switching between them. Here we use particle-based Brownian dynamics simulations to predict the relative frequency of different oscillation patterns over a large range of three-dimensional compartment geometries, in excellent agreement with experimental results. Fourier analyses as well as pattern recognition algorithms are used to automatically identify the different oscillation patterns and the switching rates between them. We also identify novel oscillation patterns in three-dimensional compartments with membrane-covered walls and identify a linear relation between the bound Min-protein densities and the volume-to-surface ratio. In general, our work shows how geometry sensing is limited by multistability and stochastic fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据