4.6 Article

Chemical, colloidal and mechanical contributions to the state of water in wood cell walls

期刊

NEW JOURNAL OF PHYSICS
卷 18, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/18/8/083048

关键词

water absorption; hydration force; wood cell walls; force balance; equation of state

资金

  1. excellence laboratory of Montpellier Chemisyst ANR [11-01-05]
  2. TU Berlin via IRTG 'SSNI' [1524]
  3. DFG through Leibniz Award [CM1101]

向作者/读者索取更多资源

The properties of wood depend strongly on its water content, but the physicochemical basis for the interaction of water with cell wall components is poorly understood. Due to the importance of the problem both in the context of wood technology and the biological function of swelling and dehydration for growth stresses and seed dispersal, a wealth of descriptive data has been accumulated but a microscopic theory of water-biomolecular interactions is missing. We develop here, at a primitive level, a minimal parameter-free, coarse-grained, model of wood secondary cell walls to predict water absorption, in the form of an equation of state. It includes for the first time all three-mechanical, colloidal and chemical-contributions, taking into account the cell walls microstructure. The hydration force around the elongated cellulose crystals and entropy of mixing of the matrix polymers (hemicelluloses and lignin) are the dominant contributions driving the swelling. The elastic energy needed to swell the composite is the main term opposing water uptake. Hysteresis is not predicted but water uptake versus humidity, is reproduced in a large temperature range. Within this framework, the origin of wood dissolution and different effects of wood treatments on water sorption can be understood at the molecular level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据