4.1 Article

Deformation evolves from shear to extensile in rocks due to energy optimization

期刊

出版社

SPRINGERNATURE
DOI: 10.1038/s43247-023-01023-w

关键词

-

向作者/读者索取更多资源

Determining how fracture network development leads to macroscopic failure in heterogeneous materials may help estimate the timing of failure in rocks in the upper crust as well as in engineered structures. The proportion of extensile and shear deformation produced by fracture development indicates the appropriate failure criteria to apply, and thus is a key constraint in such an effort. According to synchrotron observations and modeling of triaxial compression experiments on granite, fracture networks transition from shear to extensile immediately before macroscopic failure in order to optimize the total mechanical efficiency of the system.
Determining how fracture network development leads to macroscopic failure in heterogeneous materials may help estimate the timing of failure in rocks in the upper crust as well as in engineered structures. The proportion of extensile and shear deformation produced by fracture development indicates the appropriate failure criteria to apply, and thus is a key constraint in such an effort. Here, we measure the volume proportion of extensile and shear fractures using the orientation of the fractures that develop in triaxial compression experiments in which fractures are identified using dynamic in situ synchrotron X-ray imaging. The fracture orientations transition from shear to extensile approaching macroscopic, system-size failure. Numerical models suggest that this transition occurs because the fracture networks evolve in order to optimize the total mechanical efficiency of the system. Our results provide a physical interpretation of the empirical internal friction coefficient in rocks. Fracture networks transition from shear to extensile immediately before macroscopic failure in order to optimize the total mechanical efficiency of the system, according to synchrotron observations and modeling of triaxial compression experiments on granite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据