4.6 Article

Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates

期刊

NEW BIOTECHNOLOGY
卷 33, 期 2, 页码 295-304

出版社

ELSEVIER
DOI: 10.1016/j.nbt.2015.11.004

关键词

-

资金

  1. Federal Ministry of Science, Research and Economy (BMWFW)
  2. Federal Ministry of Traffic, Innovation and Technology (bmvit)
  3. Styrian Business Promotion Agency SFG
  4. Standortagentur Tirol
  5. Government of Lower Austria
  6. ZIT - Technology Agency of the City of Vienna through the COMET

向作者/读者索取更多资源

The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TGDSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (T-m) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据