4.4 Article

MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer's disease

期刊

NEUROTOXICOLOGY
卷 56, 期 -, 页码 139-149

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neuro.2016.07.004

关键词

Autophagy; miR-214-3p; Sporadic Alzheimer's disease; Atg12; Apoptosis

资金

  1. National Research Foundation for the Doctoral Program of Higher Education of China [20121107110001]
  2. National Natural Science Foundation of China [81401734, 81472007]

向作者/读者索取更多资源

The autophagy process is the major cellular degradation pathway for long-lived proteins and organelles. Dysfunction of autophagy may lead to several neurodegenerative disorders. However, the regulation and function of autophagy in sporadic Alzheimer's disease (SAD) remain unclear. In this study, we established SAMP8 mouse as a suitable SAD model and performed microarray profiling to identify miR-214-3p as a SAD associated microRNA that was downregulated in hippocampal neurons of SAMP8 mice upon the induction of autophagy. Furthermore, decreased miR-214-3p level was detected in cerebrospinal fluid from SAD patients. Overexpression of miR-214-3p in primary neurons from SAMP8 mice inhibited autophagy, demonstrated by decreased levels of LC3 beta II and Beclin1, and reduced number of GFP-LC3-positive autophagosome vesicles, and led to increased viability and decreased caspase-mediated apoptosis. Conversely, antagomiR-214-3p promoted autophagy and apoptosis in neurons from SAMP8 mice. Mechanistically, miR-214-3p negatively regulated Atg12 expression by targeting the 3'-untranslated region of Atg12. Treatment of SAMP8 mice with miR-214-3p attenuated neuronal apoptosis and improved behavioral performance. Taken together, these results suggest that miR-214-3p suppresses autophagy and alleviates hippocampal neuron apoptosis, which indicates that miR-214-3p represents a new potential neuroprotective factor for SAD. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据